
Audit Report

Mirror Protocol v2

June 22, 2021

1



Table of Contents

Table of Contents 2

Disclaimer 4

Introduction 5
Purpose of this Report 5

Codebase Submitted for the Audit 5

Methodology 6

Functionality Overview 6

How to read this Report 7

Summary of Findings 8
Code Quality Criteria 9

Detailed Findings 10
Oracle feeders cannot be updated 10

Withdraw, burn and auction will fail on short positions where funds were unlocked by
owner 10

Users can block liquidation of their short positions 11

Burning of deprecated assets through users other than the position owner will fail if
oracle stops reporting prices 11

Update of the oracle address in the mint contract is not applied to the collateral oracle
11

Inflation reward distribution might fail 12

Updating staking or lock contracts in the mint contract without migration may lead to
failures of withdraw, burn and auction messages 13

Withdrawal and staking of voting rewards fails if too many locked balance entries exist
14

Withdrawal of voting tokens fails if too many locked balance entries exist 14

End price is not used during burning of assets 15

Protocol fee distribution can be blocked by opening many polls 15

Protocol fee rate could be set to a value greater than 1 16

Hardcoded “uusd” reference for liquidity token query 16

Querying collateral asset infos is unbounded 16

Weight changes are applied retroactively to last distribution 17

Voter weight could be set to a value greater than 1 17

Updated quorum value not validated 18

Updated threshold value not validated 18

Unlocking of funds uses currently configured lockup period 18

Depositing of collateral and burning of assets is possible even if latest price is older
than 60 seconds 19

2



Attacker can hijack factory contract between initialization and post initialize message
19

Decimal calculations use 9 decimal places, CosmWasm uses 18 19

Migration functions contain unbounded loops 20

Weights are different in documentation and implementation 20

Documentation lists specific proposal types that are not used 21

Participated polls field of token manager is unused 21

Overflow checks not enabled for release profile in
packages/mirror_protocol/Cargo.toml 21

3



Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by

Philip Stanislaus and Stefan Beyer

Cryptonics Consulting S.L.
Ramiro de Maeztu 7

46022 Valencia
SPAIN

https://cryptonics.consulting/
info@cryptonics.consulting

4

https://cryptonics.consulting/


Introduction

Purpose of this Report

Cryptonics Consulting has been engaged by Terra Capitol to perform a security audit of the
smart contracts for Version 2 of the Mirror Protocol (https://mirror.finance/)

The objectives of the audit are as follows:

1. Determine the correct functioning of the system, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.

3. Determine smart contract bugs, which might lead to unexpected behavior.

4. Analyze whether best practices have been applied during development.

5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the following GitHub repository:

https://github.com/Mirror-Protocol/mirror-contracts

Commit hash: 74b7a23021f9dca2b01e49e4b7e5dd5e09bb691d

5

https://mirror.finance/
https://github.com/Mirror-Protocol/mirror-contracts


Methodology
The audit has been performed in the following steps:

1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2. Automated source code and dependency analysis.
3. Manual line by line analysis of the source code for security vulnerabilities and use of

best practice guidelines, including but not limited to:
a. Race condition analysis
b. Under- / overflow issues
c. Key management vulnerabilities

4. Report preparation

Functionality Overview
The submitted contracts implement Version 2 of the Mirror protocol, a decentralize finance
protocol aimed at providing representations of real world assets on the Terra blockchain.
Mirrored assets are minted by collateralized debt positions (CDP).

6



How to read this Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged or Resolved.
Informational notes do not have a status, since we consider them optional recommendations.

Note, that audits are an important step to improve the security of smart contracts and can find
many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
for each module, in the corresponding findings section.

Note, that high complexity or lower test coverage does not necessarily equate to a higher
risk, although certain bugs are more easily detected in unit testing than a security audit and
vice versa.

7



Summary of Findings

No Description Severity Status

1 Oracle feeders cannot be updated Critical Resolved

2 Withdraw, burn and auction will fail on short
positions where funds were unlocked by owner

Critical Resolved

3 Users can block liquidation of their short positions Critical Resolved

4 Burning of deprecated assets through users other
than the position owner will fail if oracle stops
reporting prices

Critical Resolved

5 Update of the oracle address in the mint contract is
not applied to the collateral oracle

Major Resolved

6 Inflation reward distribution might fail Minor Acknowledged

7 Updating staking or lock contracts in the mint
contract without migration may lead to failur1es of
withdraw, burn and auction messages

Minor Resolved

8 Withdrawal and staking of voting rewards fails if too
many locked balance entries exist

Minor Acknowledged

9 Withdrawal of voting tokens fails if too many locked
balance entries exist

Minor Acknowledged

10 End price is not used during burning of assets Minor Resolved

11 Protocol fee distribution can be blocked by
opening many polls

Minor Resolved

12 Protocol fee rate could be set to a value greater
than 1

Minor Resolved

13 Hardcoded “uusd” reference for liquidity token
query

Informational Resolved

14 Querying collateral asset infos is unbounded Informational Acknowledged

15 Weight changes are applied retroactively to last
distribution

Informational Acknowledged

16 Voter weight could be set to a value greater than 1 Informational Resolved

17 Updated quorum value not validated Informational Resolved

8



18 Updated threshold value not validated Informational Resolved

19 Unlocking of funds uses currently configured
lockup period

Informational Resolved

20 Depositing of collateral and burning of assets is
possible even if latest price is older than 60
seconds

Informational Acknowledged

21 Attacker can hijack factory contract between
initialization and post initialize message

Informational Acknowledged

22 Decimal calculations use 9 decimal places,
CosmWasm uses 18

Informational Acknowledged

23 Migration functions contain unbounded loops Informational Acknowledged

24 Weights are different in documentation and
implementation

Informational Resolved

25 Documentation lists specific proposal types that
are not used

Informational Acknowledged

26 Participated polls field of token manager is unused Informational Acknowledged

27 Overflow checks not enabled for release profile in
packages/mirror_protocol/Cargo.toml

Informational Resolved

Code Quality Criteria

Criteria Status Comment

Code complexity Low-Medium -

Code readability and clarity High -

Level of Documentation Medium Documentation is outdated and
diverges from the implementation,
see below

Test Coverage High -

9



Detailed Findings
1. Oracle feeders cannot be updated

Severity: Critical

In order to remove misbehaving or even compromised oracles, there needs to be a way to
update the feeder for an asset. This is even documented in the Mirror documentation, but no
such message is currently implemented in
contracts/mirror_oracle/src/contract.rs:34.

Recommendation

We recommend implementing a message to update the feeder for an asset.

Status: Resolved

Resolved in 1a09c0c

2. Withdraw, burn and auction will fail on short positions where
funds were unlocked by owner

Severity: Critical

During a withdraw, burn and auction message, short positions might trigger a release of funds
in contracts/mirror_mint/src/positions.rs:319, 645 and 847. That release will
lead to an error in contracts/mirror_lock/src/contract.rs:171 or 196 if the
user has previously unlocked all of the funds that can be unlocked through an
UnlockPositionFunds message. An attacker can exploit this by denying liquidation of
positions through the protocol.

Recommendation

We recommend allowing a graceful return of the release message such that withdraw, burn
and auction messages succeed even if there are no locked funds or no funds to unlock.

Status: Resolved

Resolved in c4e010a

10

https://github.com/Mirror-Protocol/mirror-contracts/commit/1a09c0cfa10974ea6faef035d407fddbb29fd740
https://github.com/Mirror-Protocol/mirror-contracts/commit/c4e010a0aa6a6654d6a812cd39d3375e2cbe62ee


3. Users can block liquidation of their short positions

Severity: Critical

In contracts/mirror_lock/src/contract.rs:185 an unbounded loop happens
over locked_funds. A user could add many funds to the short position, causing that loop to
run out of gas, effectively preventing withdrawal, burn and auction of short CDP positions.

Recommendation

We recommend changing the storage to remove the need for the loop.

Status: Resolved

Resolved in c4e010a

4. Burning of deprecated assets through users other than the
position owner will fail if oracle stops reporting prices

Severity: Major

During burning of deprecated assets by users other than the position owner, the current asset
price is queried from the oracle in contracts/mirror_mint/src/positions.rs:574.
That query will return an error if the latest price reported by the oracle is older than 60
seconds, leading to a failure of the asset burn message. This is a major issue since prices
might not be available for delisted/defaulted securities which prevents the protocol from
removing liquidity for those assets.

Recommendation

We recommend removing the block_time argument from load_asset_price call in
contracts/mirror_mint/src/positions.rs:574 or using the end_price of the
asset to allow burning with outdated prices.

Status: Resolved

Resolved in ea36552

5. Update of the oracle address in the mint contract is not applied
to the collateral oracle

Severity: Major

During asset registration in the mint contract, the current oracle address is used in a stored
query in contracts/mirror_mint/src/contract.rs:342. The update_config
function of the mint contract allows an update of the oracle address in
contracts/mirror_mint/src/contract.rs:227. While that update sets the current

11

https://github.com/Mirror-Protocol/mirror-contracts/commit/c4e010a0aa6a6654d6a812cd39d3375e2cbe62ee
https://github.com/cryptonicsconsulting/mirror-contracts/commit/ea365522d29132d620f83fc476067179eceb8422#diff-872c3b0fd1243fdabb3fa1e46b9fd184b08eb4c03b904dfb81ece9b0e77575f7R583


oracle address correctly, it does not update the stored queries of all existing assets.
Consequently, calling the stored query on existing assets will keep using the previous oracle.

The stored query is used in several places:

1. In the CollateralPrice query in
contracts/mirror_collateral_oracle/src/contract.rs:228, which is
used in the CDP operations (open, mint, withdraw, burn and auction) and can be used
by external users.

2. In the CollateralAssetInfo query in
contracts/mirror_collateral_oracle/src/contract.rs:229, which
can be used by external users.

This issue can be mitigated by sending a UpdateCollateralQuery message for every
asset in the system, but this process is error prone and complex since it needs to be
dispatched through governance.

Consequently, we consider this issue to be a major security concern. An oracle that has been
compromised or is misbehaving can not effectively be removed from the system with a simple
message.

Recommendation

We recommend changing the architecture to no longer rely on a stored query for fetching
prices from the oracle. Alternatively, the oracle updating logic could be rewritten to include a
migration for existing assets. Depending on the number of assets, such a migration could run
out of gas though.

Status: Resolved

Resolved in b191a0e

6. Inflation reward distribution might fail

Severity: Minor

The Distribute message of the factory contract uses an unbounded call for asset weights
through the read_all_weight function in
contracts/mirror_factory/src/state.rs:104. After that call, the
DepositReward message is sent to the staking contract, which internally also loops over all
the assets in contracts/mirror_staking/src/contract.rs:119 and
contracts/mirror_staking/src/rewards.rs:66. As more and more assets are
added to Mirror over time, this might lead to reward distribution becoming impossible.

Likewise, the DistributionInfo query message is unbounded since it calls the same
read_all_weight function.

Recommendation

12

https://github.com/cryptonicsconsulting/mirror-contracts/commit/b191a0e7fd83244d2e4513c0ce8a75d645f8dff6


We recommend profiling the amount of gas used for different numbers of assets. If a change
is necessary, we recommend inverting the logic such that the factory contract only stores the
amounts to be distributed and maintains an index of distributed rewards per asset, while the
staking contract can be called with a specific asset as a parameter to collect undistributed
rewards.

Additionally, we recommend adding start_after, limit and order_by parameters to
the DistributionInfo query.

Status: Acknowledged

Message has been split in chunks to prevent a single message containing too many assets.
This mitigates the issue for the foreseeable future, but does not solve the underlying problem.
To scale Mirror to more assets, the gas usage of this operation will have to be addressed
further. The Mirror team committed to monitor gas usage and take measures if this issue
becomes a problem.

7. Updating staking or lock contracts in the mint contract without
migration may lead to failures of withdraw, burn and auction messages

Severity: Minor

Through the update_config call of the mint contract, the staking contract and the lock
contract can be changed without a data migration in
contracts/mirror_mint/src/contract.rs:239 and 247.

A change of the staking contract without migration will lead to an error in the
_decrease_bond_amount function in
contracts/mirror_staking/src/staking.rs:343, which is called from the burn or
auction messages in the case of short positions.

A change of the lock contract without migration will lead to an error in the
unlock_position_funds function in
contracts/mirror_lock/src/contract.rs:167, which is called from the withdraw,
burn or auction messages in the case of short positions.

Both of those bugs will lead to the protocol not functioning as expected, which is an issue
especially if liquidation cannot be performed anymore.

13



Recommendation

We recommend removing the ability to update staking or lock contracts, adding migration or
allowing the contracts outlined above to pass without returning an error in the cases
described.

Status: Resolved

Resolved in dfe5b86

8. Withdrawal and staking of voting rewards fails if too many locked
balance entries exist

Severity: Minor

In the get_withdrawable_polls function in
contracts/mirror_gov/src/staking.rs:317, an unbounded iteration over the
entries in locked_balance is performed. In each iteration, two storage entries are read. If
the transaction runs out of gas, the WithdrawVotingRewards and
StakeVotingRewards messages would fail, and it would be impossible for a user to
recover and withdraw their rewards.

This issue only affects individual users and the likelihood of the locked_balance list
growing to the point of the described issue is very low. Hence we classify this issue as minor.

Recommendation

We recommend profiling the application to check how severe this problem is. If needed, the
issue could be solved by adding another call to only withdraw/stake voting rewards for a
specific poll. That would allow a user to recover.

Status: Acknowledged

The Mirror team committed to monitor gas usage and take measures if this issue becomes a
problem.

9. Withdrawal of voting tokens fails if too many locked balance
entries exist

Severity: Minor

The WithdrawVotingTokens message calls compute_locked_balance, which
contains an unbounded iteration over the entries in locked_balance in
contracts/mirror_gov/src/staking.rs:129. Since the
WithdrawVotingTokens message is the only place where the locked_balance is
cleaned, a user could never recover from that, and could never get their staked tokens back.

14

https://github.com/Mirror-Protocol/mirror-contracts/commit/dfe5b866c0f04ccff7a398323c4637935c7fef9c


This issue only affects individual users and the likelihood of the locked_balance list
growing to the point of the described issue is very low. Hence we classify this issue as minor.

Recommendation

We recommend profiling the application to check how severe this problem is. There are
different approaches to fix it, e. g. a separate message to remove locked balances, a change
of the storage such that the largest locked balance is stored rather than computed, or more
places where locked_balance is cleaned.

Status: Acknowledged

The Mirror team committed to monitor gas usage and take measures if this issue becomes a
problem.

10. End price is not used during burning of assets

Severity: Minor

In contracts/mirror_mint/src/positions.rs:571, a check is done whether the
burnt asset has an end_price is set, which if true allows anyone to burn assets for that
position. That end_price is however not used in any pricing calculation. Without the end_price
being used, there is no incentive for external parties to actually burn assets.

Recommendation

We recommend using the end_price during burning of assets through anyone except the
position owner.

Status: Resolved

Resolved in 7fccafe

11. Protocol fee distribution can be blocked by opening many polls

Severity: Minor

The Distribute message of the collector contract sends the DepositReward message
to the gov contract. Within that contract, all polls are read in
contracts/mirror_gov/src/staking.rs:153. That storage read is unbounded and
could run out of gas, reverting the distribution. Theoretically, an attacker can block protocol
fee distribution by opening many polls. Since opening polls has an economic cost and
distribution can be re-triggered at any time by any user, this is a minor security concern.

15

https://github.com/Mirror-Protocol/mirror-contracts/blob/7fccafe53e3306eab8cd10ff7ad13766a93029d7/contracts/mirror_mint/src/positions.rs#L583


Recommendation

We recommend modelling the cost of such an attack. If necessary, we recommend adjusting
the economic parameters of polls to mitigate this attack, e. g. by increasing the cost per poll
quadratically in the number of polls currently in progress.

Status: Resolved

Resolved in 23b1fa1

12. Protocol fee rate could be set to a value greater than 1

Severity: Minor

In the current implementation, the protocol_fee_rate could be set to a value greater
than 1 in contracts/mirror_mint/src/contract.rs:255, which would lead to an
underflow panic in contracts/mirror_mint/src/positions.rs:335 and
contracts/mirror_mint/src/positions.rs:809.

Recommendation

We recommend adding an assertion to validate that the protocol_fee_rate is set to a
value smaller than 1 to prevent this issue.

Status: Resolved

Resolved in 3416a23

13. Hardcoded “uusd” reference for liquidity token query

Severity: Informational

In contracts/mirror_factory/src/contract.rs:413, a hardcoded reference to
"uusd" is used to query the liquidity token of the trading pair, while other queries in the
codebase use config.base_denom.

Recommendation

We recommend using config.base_denom in this query.

Status: Resolved

14. Querying collateral asset infos is unbounded

Severity: Informational

The CollateralAssetInfos query message is unbounded in
contracts/mirror_collateral_oracle/src/contract.rs:295, which could

16

https://github.com/Mirror-Protocol/mirror-contracts/commit/23b1fa1a61c1f73785387e7faa48028f7cffc7c0
https://github.com/Mirror-Protocol/mirror-contracts/commit/3416a2343516d28cf205168f00b88660703a8a38


cause calling transactions to run out of gas. Since the query is not used in the current mirror
contracts, this issue is just reported here for informational purposes. Nevertheless, external
contracts cannot use this query without being exposed to out of gas errors.

Recommendation

We recommend adding start_after, limit and order_by parameters to the query.

Status: Acknowledged

15. Weight changes are applied retroactively to last distribution

Severity: Informational

The distribution logic always uses the latest weight. Within the UpdateWeight message, no
distribution is triggered. That means that the next distribution will retroactively use the latest
weight for the whole period, including the time before the call to update the weight. This
could confuse users.

Recommendation

We recommend calling distribute before the weight is updated.

Status: Acknowledged

16. Voter weight could be set to a value greater than 1

Severity: Informational

In the current implementation, the voter_weight could be set to a value greater than 1 in
contracts/mirror_gov/src/contract.rs:205, which would imply that more
protocol fee rewards are distributed to voters than have been deposited by the collector
contract.

Recommendation

We recommend adding an assertion to validate that the voter_weight is set to a value
smaller than or equal to 1 to prevent this issue.

Status: Resolved

Resolved in b191a0e and d3f47f4

17

https://github.com/cryptonicsconsulting/mirror-contracts/commit/b191a0e7fd83244d2e4513c0ce8a75d645f8dff6
https://github.com/Mirror-Protocol/mirror-contracts/commit/d3f47f471e0e4e711779daafe43d033694948b76


17. Updated quorum value not validated

Severity: Informational

In contracts/mirror_gov/src/contract.rs:181, an update of the quorum value is
not validated.

Recommendation

We recommend calling validate_quorum(msg.quorum)?; before updating the value.

Status: Resolved

18. Updated threshold value not validated

Severity: Informational

In contracts/mirror_gov/src/contract.rs:185, an update of the threshold
value is not validated.

Recommendation

We recommend calling validate_threshold(msg.threshold)?; before updating the
value.

Status: Resolved

19. Unlocking of funds uses currently configured lockup period

Severity: Informational

Unlocking of funds by the user is only possible if the lockup period is over. The check for that
condition in contracts/mirror_lock/src/state.rs:186 uses the current lockup
period, read from the config. Changes to the config will be applied to any funds, even to funds
locked in the past. While not a security issue, this might confuse users.

Recommendation

We recommend calculating and store the unlock time, rather than storing the lock time and
calculate whether the lockup period is over when unlock is called.

Status: Resolved

18



20. Depositing of collateral and burning of assets is possible even if
latest price is older than 60 seconds

Severity: Informational

According to the documentation, CDP operations (mint, burn, deposit and withdraw) should
be disabled if no price update has been received for 60 seconds or more. In the function for
depositing collateral in contracts/mirror_mint/src/positions.rs:206 and in the
function for burning assets that are not deprecated in
contracts/mirror_mint/src/positions.rs:527, that condition is not checked.

Recommendation

We recommend calling load_asset_price to implement the check or adjusting the
documentation.

Status: Acknowledged

21. Attacker can hijack factory contract between initialization and
post initialize message

Severity: Informational

Since init and post_initialize in
contracts/mirror_factory/src/contract.rs:125 are separate messages, an
attacker can hijack the contract by setting itself as owner between those messages. This is
not really a security concern, since the honest post_initialize message would fail and
the contracts could just be redeployed.

Recommendation

We recommend setting the owner in the init message and checking whether the
initialization has been completed by checking one of the other config values against the
CanonicalAddr::default() value. Alternatively, the init and post_initialize
messages as well as all the messages in between could be batched into one transaction to
ensure they are executed in an atomic way.

Status: Acknowledged

22. Decimal calculations use 9 decimal places, CosmWasm uses 18

Severity: Informational

Decimal functions in contracts/*/src/math.rs use a DECIMAL_FRACTIONAL of
1_000_000_000, while the underlying CosmWasm functions use a DECIMAL_FRACTIONAL

19



of 1_000_000_000_000_000_000. While there is no security risk in this difference above,
a loss in precision in calculations might be unexpected for users.

Recommendation

We recommend using a DECIMAL_FRACTIONAL of 1_000_000_000_000_000_000 as
CosmWasm does.

Status: Acknowledged

Intended by Mirror to prevent overflow during multiplications

23. Migration functions contain unbounded loops

Severity: Informational

The migration functions contain unbounded loops in
contracts/mirror_gov/src/migrate.rs:87, 160,
contracts/mirror_mint/src/migration.rs:65 and
contracts/mirror_staking/src/migration.rs:33. This might cause a security
issue if some migrations work, but others fail – leaving the whole protocol in an inconsistent
state.

Recommendation

We recommend batching all migrations into one call to ensure they are executed in an atomic
way.

Status: Acknowledged

24. Weights are different in documentation and implementation

Severity: Informational

In contracts/mirror_factory/src/contract.rs:30 and 31, MIR tokens have a
weight of 300, while other assets have a weight of 30. The documentation states that MIR
tokens have a weight of 3, while other assets have a weight of 1.

Recommendation

We recommend updating the documentation for consistency.

Status: Resolved

20



25. Documentation lists specific proposal types that are not used

Severity: Informational

The documentation at https://docs.mirror.finance/protocol/governance/proposal-types lists a
number of proposal types, which are not implemented in
contracts/mirror_gov/src/contract.rs:284.

Recommendation

We recommend updating the documentation for consistency.

Status: Acknowledged

26. Participated polls field of token manager is unused

Severity: Informational

The participated_polls field of the token manager struct defined in
contracts/mirror_gov/src/state.rs:47 is currently unused.

Recommendation

We recommend removing the participated_polls field.

Status: Acknowledged

27. Overflow checks not enabled for release profile in
packages/mirror_protocol/Cargo.toml

Severity: Informational

While set in all other packages, packages/mirror_protocol/Cargo.toml does not
enable overflow-checks for the release profile.

Recommendation

We recommend enabling overflow checks in every package, even if no calculations are
currently performed in those packages. That prevents unintended consequences when
features are added in the future or when the project is refactored.

Status: Resolved

Resolved in 6e09898

21

https://docs.mirror.finance/protocol/governance/proposal-types
https://github.com/Mirror-Protocol/mirror-contracts/commit/6e09898f172cab54d056e91a765467feec279e0b

